Solve the simultaneous equations algebraically.

x^2 + y^2 = 29y - x = 3Rearrange the second equation such that one variable, either x or y, is the subject. I will rearrange to make x the subject. x = y - 3. Substitute the new equation into equation 1 in place of x.(y-3)^2 + y^2 = 29.Rearrange to make the equation equal 0 and simplify. y^2 - 6y + 9 + y^2 = 29. 2y^2 - 6y - 20 = 0. All variables have a factor of 2 and so we can simplify further by dividing by 2.y^2 - 3y - 10 = 0. Factorise. (y-5)(y+2)=0. Therefore, y=5 when x=? and y=-2 when x=?. To find out what x is in each case of y we can substitute the x values back into one of the original equations and see what values of y we receive. In this case I will substitute back into equation 2. When y=5, 5 - x = 3. Therefore, x=2. --> When y=5, x=2.When y=-2, -2 - x= 3. Therefore, x = -5. --> When y=-2, x=-5.

JA
Answered by Jane A. Maths tutor

2560 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What are the differences between decimal points and significant figures?


If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.


Solve the simultaneous equations for x and y: 3x+3y=5 and 6x+5y=9


The perimeter of an isosceles triangle is 16cm the lengths of the sides are (x+3)(this is the length of the opposite side as well) and (x+4). Determine the value of x .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences