Find the roots of the following curve: y = 6x^2 - 4x.

The two terms in the quadratic equation share the factors 2 and x, so these can be brought outside the bracket as shown: y = 2x(3x-2). In order to solve for the roots (where the curve intercepts the x-axis), we must set y = 0 and hence satisfy the equation: 2x(3x-2) = 0. We can see that there are two possible solutions: 2x = 0 AND 3x-2 = 0. The first equation gives x = 0 and as for the second we can solve by adding 2 to both sides and then dividing by 3: 3x-2=0, 3x = 2, x = 2/3. So we have calculated the roots to be: x = 0 AND x = 2/3.

Answered by Sam K. Maths tutor

2171 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.


Change the subject of the formula F=(t^2+4b)/c to b.


There is a right angled triangle, you know the length of the hypotenuse (6) and one other side (3), can you calculate the third side of the triangle?


The population of a town in 2014 was 80058. This was a 65% increase on its population in 1994. What was the population in 1994?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences