Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A

First differentiate the function with respect to x, dy/dx=6x+5 this finds the gradient function now calculate the gradient at point A by inputing x=2 into the gradient function 6(2)+5=17. Now using y=mx+c where m is known gives y=17x+c now must solve for c, at x=2 y=24 by 3(2)^2+5(2)+2=24 now we can solve for c where 24=17(2)+c this gives c=-10 y=17x-10

Related Further Mathematics GCSE answers

All answers ▸

Work out the gradient of the curve y=x^3(x-3) at the point (3,17)


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


Factorise the following quadratic x^2 - 8 + 16


A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences