Factorise (5x^2 + 7x + 2)

This expression is in the form of ax^2 + bx + c, so you need to find two numbers which multiply to get ac and add to make b.
Step 1: Here a is not = 1, so you need to take out the highest common factor. In this case, the HCF is 1, so we keep the expression as it is.
Step 2: Identify the product (ac) and the sum (b). When ax^2 + bx + c is (5x^2 + 7x + 2) then ac is 5 x 2 = 10 and b is 7
Step 3: Find the numbers which multiply to make 10 (ac) and add to make 7 (b), in this case:5 x 2 = 10 and 5 + 2 = 7
Step 4: Re-write the expression, replacing bx with the numbers from Step 35x^2 + 5x + 2x + 2
Step 5:Divide this expression into two groups: (5x^2 + 5x) and (2x + 2)and factor out the highest common factor of both:5x(x + 1) and 2(x + 1)
Step 6:Now, take out the common factor, in this case (x+1). The other bracket will be the leftover values, in this case (5x + 2).
So your answer is: (5x + 2)(x+1).Use F.O.I.L to check your answer.



Answered by Daisy J. Maths tutor

6147 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve the following simultaneous equations? 4x-3y=18, 7x+5y=52


OCR, 2016, Higher Maths: Rationalise the denominator 1/(1+sqrt(3))


A sphere has a surface area of 4m^2, radius r. Another sphere has radius 2r. Calculate the Volume of the second sphere in M^3.


Solve these simultaneous equations: 3x-5=-4y and 2xy=-4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences