Simplify ln(e^2) - 4ln(1/e)

Using log rules, we can simplify the equation as follows: Firstly log(xa) = alog(x) implies that ln(e2) = 2ln(e). Next loga(a) = 1 implies 2ln(e) = 21 = 2 [Since the natural logarithm ln is equivalent to loge]. So ln(e2) = 2. Following this ln(1/e) = ln(e-1), which from the previous rule we can see ln(e-1) = -ln(e). Lastly we know ln(e) = 1, so -4*-ln(e) = -4*-1 = 4. So -4ln(1/e) = 4. Therefore ln(e2) - 4ln(1/e) = 2 + 4 = 6

MJ
Answered by Mark J. Maths tutor

4994 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning