Assuming no friction, describe the motion of a simple pendulum released from rest at t=0 at amplitude A? Provide information about its speed and position at characteristic times during one period. [The 1D equation of motion is described by a cosine]

The displacement of the bob of mass m is given by the equation x(t)=A cos(w*t), with no phase offset as given by the boundary conditions (zero speed at t=0). By differentiating this equation twice the first and second derivatives of displacement, i.e. speed and acceleration as a function of displacement can be obtained. By finding maxima of these quantities by looking at peaks of higher order derivatives, one can find the times t at which speed and acceleration are maximised and plot the graphs for one period.
Either we can treat this mathematically or provide physical insight into what should happen to the pendulum. As the pendulum is released from rest, the initial speed is zero. Due to the tangential component of the gravitational force, the bob of mass m is accelerated until it reaches a maximum speed at zero height. As the mass continues to move due to inertia and the gravitational force acting now opposite to its motion, it will slow down again and reach the same height as initially (assuming no air resistance etc.).

Answered by Stefan A. Physics tutor

1165 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain Newton's laws of motion


Hanging on a branch of a tree, a monkey sees a hunter aiming a gun at him. The monkey lets go of the branch at the exact same time the bullet is fired. Explain why the bullet hits the monkey.


If an object of mass 6kg was dropped from a height 35m (initially at rest), how long would it take to reach the ground under free fall?


Define the term ultrasound wave


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences