The equation of a curve is y=(x+3)^2 +5, what are the co-ordinates of the curve's turning point?

Differentiate y with respect to x:dy/dx = 2(x+3) = 2x+6When the above equation is equal to 0, this is where the turning point of the curve is.2x+6 = 02x = -6x = -3Therefore, at x = -3, the curve has a turning point. To find the y co-ordinate, substitute -3 into the original equation and solve for y:y=(-3+3)^2+5=5Therefore, the co-ordinates of the turning point are (-3,5)

Answered by Harry H. Maths tutor

2883 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve a quadratic equation without a calculator?


A t-shirt is in two shops, both of which has it on sale. In shop A, the t-shirt originally cost £15, but has been reduced by 30%. In shop B, it used to cost £17 and has been reduced by 40%. In which shop is the t-shirt now cheaper, and by how much?


What is completing the square?


Find the equation of the tangent to y = 2x^2 + 7 at x = 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences