Find the coordinates of the turning point of the curve y=x^2+3x+7

We know that turning points occur when the gradient is equal to zero. Hence, we differentiate this curve. dy/dx = 2x+3 and we set this equal to zero. This gives 2x+3=0, we then rearrange to get 2x=-3 and so x=-3/2. Placing this value of x back into the curve equation gives y=(-3/2)^2+3(-3/2)+7 and so y= 19/4. Therefore the coordinates of the turning point are (-3/2,19/4)

Answered by Rosie H. Maths tutor

4157 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rearrange the equation y = 3(x+1)/4, making x the subject.


The diagram shows a garden in the shape of a rectangle. All measurements are in metres. The length of the rectangle: 4+3x and the width of the rectangle: x+6. The perimeter of the garden is 32 metres. Work out the value of x


Expand (x+3)(2x+9)


A plane travels at a speed of 213 miles per hour. Work out an estimate for the number of seconds the plane takes to travel 1 mile.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences