Find the coordinates of the turning point of the curve y=x^2+3x+7

We know that turning points occur when the gradient is equal to zero. Hence, we differentiate this curve. dy/dx = 2x+3 and we set this equal to zero. This gives 2x+3=0, we then rearrange to get 2x=-3 and so x=-3/2. Placing this value of x back into the curve equation gives y=(-3/2)^2+3(-3/2)+7 and so y= 19/4. Therefore the coordinates of the turning point are (-3/2,19/4)

RH
Answered by Rosie H. Maths tutor

4900 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A group of 44 pupils were asked if they owned a phone or a tablet. 5 people are known to own both 3 said they only owned a tablet 17 said they owned at least a phone A student is picked a random, what is the probability that the student doesn’t have


James buys a new car for £1000. Every year the value of the car decreases by 3%. If James bought the car in 2017 what would the value of the car be in 2021?


Solve the simultaneous equations x^2 + y^2 =13 and x= y - 5.


Make x the subject of the formula: 3x - 2 = y + 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning