Comound interest: A car is bought for the price of £12 000, but its value depreciates every year by 8%. Calculate, how much will the car be worth in 5 years

The question states the value of the car depreciates every year by 8%. This means that from the original, 100% value of the car in a set year, every consecutive year the value will decrease by 8% so that the value of the car in the next year will be 92% the value of the original price in the first year. As a result, to find the value of the car in the next year, we deduce 8% from 100% and multiply it by 12000. We express 100% as 100/100 (=1) and 8% as 8/100 (=0.08) to facilitate calculations. In one year, the value of the car will be 12000 x (1 - 8/100), in other words, 12000 x 0.92, which equals 11040.Consequently, after the second year, to calculate the value, we take the cost of the car after one year and do the same: 11040 x 0.92We then repeat this 5 times. However, to avoid long calculations (as it is 5 years), we can simplify this by introducing the power of 5.We now take the original value of the car and multiply it by 0.92 which is also to the power of 5.12000 x (1 - 8/100)5 = 7908.978278 (or 7908.98 rounded to two decimal places)

Answered by Victoria B. Maths tutor

3143 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


How do you know which circle theorems to use when answering a question?


A quarter circle represents a piece of land. The length of the straight sides is 100 ft each. If the land is enclosed by a fence, what is closest to the length, in feet, of the fence?


For the equation x^2 - 2x - 8 = y find: (a) The roots. (b) The y-intercept. (c) The coordinate of the turning point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences