A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).

Find the times when is instantaneously at rest.In order to solve this question we first have to multiply out in order to obtain the full expression of x which will be x = 1/2t^4 -2t^3+1/2t^2. Now we differentiate with respect to time we obtain v=2t^3 -3t^2+t. If P is suppose to be at rest then v will be equal zero. So we obtain an equation 0=2t^3-3t^2+t and solving the equation t(2t-1)(t-1)=0 and we obtain three different answers t=0, t=1/2 and t=1 and all answers are possible.

Answered by Aleksander K. Maths tutor

17479 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


A ball is projected at an angle b from the horizontal. With initial velocity V the ball leaves the ground at point O and hits the ground at point A. If Vcos(b) = 6u and Vsin(b) = 2.5u, how long does the ball take to travel between O and A.


Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences