Work out the number of green pens in the box. (rest of Q below)

 There are only green pens and blue pens in a box. There are three more blue pens than green pens in the box. There are more than 12 pens in the box. Simon is going to take at random two pens from the box. The probability that Simon will take two pens of the same colour is 27/55. b= blue pens // g= green pens // x= total pens P(two of same colour) = P(green, green) + P(blue, blue) P(two of same colour) = (g/x)(g-1/x-1) + (b/x)(b-1/x-1)From Q: b = g + 3x = b + gx = (g + 3) + g = 2g + 3P(two of same colour) = (g/2g+3)(g-1/2g+2) + (g+3/2g+3)(g+2/2g+2) = 27/55Expanding + Solving: (g2-g)/(4g2+10g+6) + (g2+5g +6)/(4g2+10g+6) = 27/552g2+ 4g + 6 = 27/55 (4g2+10g+6) g2/55 - 5g/11 + 84/55 = 0g2 -25g +84 = 0 (g-21)(g-4) = 0 g= 21 g= 4BUT - Q states g > 12 Therefore g = 21

Answered by Elinor H. Maths tutor

3948 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Ms Henderson has two jars of sweets. The jars contain the same number of sweets in total. 25% of the sweets in Jar A are mint. Two fifths of the sweets in Jar B are mint. There are 10 mint sweets in Jar A, how many mint sweets are there in Jar B?


The perimeter of a right-angled triangle is 60 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Calculate the area of the triangle.


Here are three expressions. b/a, a – b, and ab. When a = 2 and b = -6, which expression has the smallest value?


f(x) = 2x + c, g(x) = cx + 5, fg(x) = 6x + d. c and d are constants. Work out the value of d. 3 marks.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences