A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?

Invert the translation of (2,3) to get the parabola passing through the point (4,7)-(2,3)=(2,4). This is the same as saying that y=4 when x=2, substitute this into your equation y^2=4ax to get a=2.This will be seen easier with a picture of the parabola and the curve C.

GV
Answered by Gabriel V. Further Mathematics tutor

2518 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


What is the polar form of the equation: x^2+y^2 =xy+1


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


Prove that "6^n + 9" is divisible by 5 for all natural numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning