A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?

Invert the translation of (2,3) to get the parabola passing through the point (4,7)-(2,3)=(2,4). This is the same as saying that y=4 when x=2, substitute this into your equation y^2=4ax to get a=2.This will be seen easier with a picture of the parabola and the curve C.

GV
Answered by Gabriel V. Further Mathematics tutor

2541 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


Find the general solution of the second order differential equation: y''+2y'-3 = 0


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning