Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.

I find that a lot of maths at A-Level is unmotivated, and this causes a lot of unnecessary confusion. You can do this question, you just need to recognise the point of log and keep a level head. Log is defined as the inverse function to the exponential, which is a lot of scary words that basically boils down to recognising that when you see log3(c)=m, and they want you to find something involving c, that you should write down c=3^m. Then similarly write d=(27)^n.
Now this looks a little scary as you have a 27 involved, what does that have to do with 3? Now you have to see that 27=3^3, and then you can see that d=3^(3n). Now c/(d^1/2)=3^(m-(1/2)*(3n))=3^(m-(3/2)n) (by properties of powers) and we're happy.

Answered by Gabriel V. Maths tutor

3782 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


Particles P and Q of masses 0.4kg and m kg are joined by a light inextensible string over a smooth pulley. When released Q accelerates downward at 2.45ms^-2. Find m.


z = 5 - 3i Find z^2 in a form of a + bi, where a and b are real constants


Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences