Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.

I find that a lot of maths at A-Level is unmotivated, and this causes a lot of unnecessary confusion. You can do this question, you just need to recognise the point of log and keep a level head. Log is defined as the inverse function to the exponential, which is a lot of scary words that basically boils down to recognising that when you see log3(c)=m, and they want you to find something involving c, that you should write down c=3^m. Then similarly write d=(27)^n.
Now this looks a little scary as you have a 27 involved, what does that have to do with 3? Now you have to see that 27=3^3, and then you can see that d=3^(3n). Now c/(d^1/2)=3^(m-(1/2)*(3n))=3^(m-(3/2)n) (by properties of powers) and we're happy.

GV
Answered by Gabriel V. Maths tutor

4263 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


What is the product rule and when do you use it?


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning