how am I meant to solve sq.root(6^2+8^2) = cube.root(125a^3) when one side is squared and the other is cubed?

first of all, have a look at each side separately to see you you can cancel anything down.e.g. the square and square root can cancel out. => sq.root(62+82) = 6+8on the otherside, the cube, and cube root can cancel out => cube.root (125a3) -> cube.root(a3) = a, leaving (cube.root(125))a (is 125 a cube number?)125 is 53 leaving an equation with no squares, cubes or roots on either sidesq.root(62+82) = cube.root(125a3) goes too => 6+8=5a=> 6+8=15 therefore 15=5a=> a=15/5=> a=3

Answered by Rosalind S. Maths tutor

5773 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Why is Pythagoras theorem (a^2 + b^2 = c^2) true for every right angle triangle?


Prove that (3n+1)²-(3n-1)² is a multiple of 4 taking into account that n is a positive integer value


How to solve a quadratic equation?


A curve has an equation of y=2x^2 + 7x -8 . Find the co-ordinates of the turning point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences