Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?

Firstly lets draw it out-Draw a line from the origin to the point. calculate the change in y over change in x =(3-0)/(4-0)=3/4Take negative reciprocal which is equal to m. Then do y-y1=m(x-x1 ) or y = mx +c to get the final answer y=-(4/3)+25/3

NM
Answered by Nayan M. Maths tutor

2864 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A 4 digit number is picked. It's second digit is a prime number, it must be even and it must be greater than 5000. How many possible numbers can be picked?


Factorise 12x^2 +17x +6


The equation of line L is y = 3x - 2 and the equation of line Q is 3y - 9x + 5 = 0, show these two lines are parallel


Write an algebraic expression to show the area of a square with side length x+4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning