Point A has coordinates (-1,3). Point B has coordinates (2,-3). Find the equation of the line L that goes through these two points. Point C has coordinates (0,1). Hence or otherwise, find the equation of the line perpendicular to L that goes through C.

First we use the equation gradient = (y1-y2)/(x1-x2) to find the gradient of the line L, using point A (-1,3) and point B (2,-3). This gives us gradient = (3-(-3)/(-1-2) = (3+3)/(-3) = -2. Now we substitute point A into the equation y = mx +c where m is the gradient we just calculated. So 3 = -2*-1+c, so c = 1, and the line equation is y = -2x+1 To find a perpendicular line we use the 'negative reciprocal' of the gradient which means -1/m to find the gradient of the second line. Now we have another gradient, and another point C so we can find the equation of the new line. The new gradient = -1/(-2) = 1/2. So y = 1/2x + c. Using point C (0,1) : 1 = 1/2*0 + c, so c = 1. The second line has equation y = 1/2x + 1

AG
Answered by Asa G. Maths tutor

3261 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the coordinates of the point of intersection of the lines 2x + 3y = 12 and y = 7 - 3x.


(x + a)(x + 3)(2x+1) = bx^3 + cx^2 + dx -12, find the values of a, b, c and d.


How to differentiate 9x^2+ 4x-7=0


What are the roots of (2x-5)(x-3) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning