v^2 = 2w - x^2. w = 40; x = 4. Find the value of v.

Firstly, we can put the values given in the question into our equation.v2 = 2w - x2Goes to ...v2 = 2(40) - (4)2After we do the multiplication and indices, the equation looks like this.v2 = 80 - 16Do the subtraction.v2 = 64Now, to get rid of the squared sign, we have to do the opposite to both sides of the equation. We must square root both sides./v2 = /64Do the square roots.v = 8And you have your answer!

JT
Answered by Jack T. Maths tutor

2832 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Ms Henderson has two jars of sweets. The jars contain the same number of sweets in total. 25% of the sweets in Jar A are mint. Two fifths of the sweets in Jar B are mint. There are 10 mint sweets in Jar A, how many mint sweets are there in Jar B?


How do you differentiate? And how is integration related to it?


The equation of line 1 is y=3x-2 and the equation of line 2 is 3y-9x+5=0. Show the two lines are parallel.


Solve X^2 +13X+48=12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning