The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the stationary points on the curve y=x^5 -15x^3


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


If y=x^3+9x, find gradient of the tangent at (2,1).


Find the stationary point of 3x^2+7x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences