The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

Related Further Mathematics GCSE answers

All answers ▸

Can you explain rationalising surds?


Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.


Work out the coordinates for the stationary point of y = x^2 + 3x + 4


This is a question from a past paper: https://prnt.sc/r6jnxc


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences