The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

Related Further Mathematics GCSE answers

All answers ▸

Given f(x)= 8 − x^2, solve f(3x) = -28


Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15


Solve the following simultanious equations: zy=28 and 2z-3y=13


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences