The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

AB
Answered by Adam B. Further Mathematics tutor

5739 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Differentiate y = x*cos(2x)


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Factorise 6x^2 + 7x + 2


The equation of a curve is y = x^2 - 5x. Work out dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning