The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

AB
Answered by Adam B. Further Mathematics tutor

5246 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


Given f(x)= 8 − x^2, solve f(3x) = -28


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences