a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.

a) First deduce that problem can be solved by inspection. Then use the fact that the derivative of tan3x equals 3sec^2(3x) and adjust for the constant. (Note this fact should be given in a formula booklet).b) Decide which part of the expression you will differentiate and which part you will integrate (note part a of the questions asks you to integrate something so this is a big hint. You can also use acronym LIATE). Use integration by parts formula which should also be given but it is handy to memorize it. Work carefully through algebra. (Note I will write the math on the whiteboard).

ER
Answered by Ebrahim R. Maths tutor

3624 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


Integrate ln(x) by parts then differentiate to prove the result is correct


How do one tailed and two tailed hypothesis tests differ


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning