Write x^2+4x-12 in the form (x+a)^2+b where a and b are constants to be determined.

This method is known as completing the square. To find the constant a, we must halve the coefficient of x, which in this case is 4. This is to compensate for the double term when expanding the brackets. So a=4/2 =2. To find b, we subtract a^2 from the constant at the end of the expression, which in this case is -12. This is to compensate for the extra a^2 term that will appear once expanding the brackets. So b = -12 -2^2 = -12-4 =-16.

PG
Answered by Priya G. Maths tutor

5332 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

25= x2 + 10 - 6. Find X


If p = (3a + 5)/(4 - a), make a the subject of the formula


Solve the inequality. x^2 + 2x -15 > 0


A car depreciates at 8% per year. The initial price of the car is £25,000. How much will the car be worth after 4 years? After how many years will the car be worth less than £14,000?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences