What is completing the square?

What is completing the square?Completing the square is a way of rewriting quadratic expressions in a form that can help us interpret graphs and solve quadratic equations. It involves rewriting ax2 + bx + c in the form (x + d)2 + e, where d and e are new constants to be found.
How do I do it?Let's take the simple quadratic equation x2 + 2x + 1 as an example. The goal is to write it in the form (x + d)2 + e, but how do we find d and e? There are several ways of doing it, but here is a quick way you can use as a shortcut.First, take the number in front of x, (called the coefficient of x) and divide it by 2. This goes inside the bracket next to x. So for x2 + 2x + 1, the coefficient of x is 22 divided by 2 is 1, so we would write it down like this: (x + 1)2.The next step is to subtract the square of the number we just put in the bracket next to x12 = 1, so we would write: (x + 1)2 - 1.Finally, we add on the number at the end of the original quadratic equation (the constant term). The number at the end of x2 + 2x + 1 is 1. We write (x + 1)2 - 1 + 1. The lines of working would look like this:x2 + 2x + 1= (x + 1)2 - 1 + 1= (x + 1)2
What about when a ≠ 0?The case is slightly different when the coefficient of x2 is not 0. In that case we do the following method. Taking the example of 3x2 + 6x - 9, we must first factor out the coefficient of x2 like so: 3x2 + 6x - 9 = 3[x2 + 2x - 3]From here, we proceed as normal:3[x2 + 2x - 3]= 3[(x+1)2 - 1 + 3]= 3[(x+1)2 + 2]= 3(x+1)2 + 6

Answered by Jack L. Maths tutor

2462 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 6x – 5 = 2x + 13


S is a geometric sequence. a) Given that (√x - 1), 1, and (√x + 1) are the first three terms of S, find the value of x. b) Show that the 5th term of S is 7 + 5√2


solve z^4=2(1+isqrt(3)) giving roots in form r(cos(theta)+isin(theta))


How do you calculate arc length and sector area and why is it calculated like this? You are given sector angle 40 degrees and radius 7cm and asked to give answers to 3sf.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences