What is completing the square?

What is completing the square?Completing the square is a way of rewriting quadratic expressions in a form that can help us interpret graphs and solve quadratic equations. It involves rewriting ax2 + bx + c in the form (x + d)2 + e, where d and e are new constants to be found.
How do I do it?Let's take the simple quadratic equation x2 + 2x + 1 as an example. The goal is to write it in the form (x + d)2 + e, but how do we find d and e? There are several ways of doing it, but here is a quick way you can use as a shortcut.First, take the number in front of x, (called the coefficient of x) and divide it by 2. This goes inside the bracket next to x. So for x2 + 2x + 1, the coefficient of x is 22 divided by 2 is 1, so we would write it down like this: (x + 1)2.The next step is to subtract the square of the number we just put in the bracket next to x12 = 1, so we would write: (x + 1)2 - 1.Finally, we add on the number at the end of the original quadratic equation (the constant term). The number at the end of x2 + 2x + 1 is 1. We write (x + 1)2 - 1 + 1. The lines of working would look like this:x2 + 2x + 1= (x + 1)2 - 1 + 1= (x + 1)2
What about when a ≠ 0?The case is slightly different when the coefficient of x2 is not 0. In that case we do the following method. Taking the example of 3x2 + 6x - 9, we must first factor out the coefficient of x2 like so: 3x2 + 6x - 9 = 3[x2 + 2x - 3]From here, we proceed as normal:3[x2 + 2x - 3]= 3[(x+1)2 - 1 + 3]= 3[(x+1)2 + 2]= 3(x+1)2 + 6

JL
Answered by Jack L. Maths tutor

2987 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find x when: (2^x)(e^(3x+1))=10. Give your answer in the form (a + ln(b)) / (c + ln(d)) , where a,b,c,d are integers.


Find x: 4x + 7 = 27


How to recognise and make the link between probability and the algebraic demands of this question?


A is the point (4,1). B is the point (10,15). Find the perpendicular bisector or of AB.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning