Solve simultaneously, x+y=2 and 4y^2-x^2=11

(1) x + y = 2(2) 4y2 - x2 = 11
Rearrange (1) to x= 2-y & substitute x=2-y into equation (2)
Simplify the new equation to 3y2+4y-15 = 0, use quadratic formula or simplify to (3y-5)(y+3)=0 and solve to get
y1= 5/3 y2 = -3
Substitute the values of y1 and y2 into equation one and solve for the 2 values of x
y1= 5/3 x1= 1/3 y2 = -3 x2 = 5
Substitute answers for x and y back into the original equations to verify they are correct

NN
Answered by Nicholas N. Maths tutor

4473 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 15a^2 + ab - 6b^2


Solve the equation 3(x+1) = 21


If one shop has melons for sale on a buy one get one free offer at £2 a melon with each melon weighing 2kg, and a second shop offering melons at 30p per kilogram. Which shop is the best value for money?


How do I solve simultaneous equations graphically? e.g (1) 4x - 3y = 11 (2) 3x + 2y = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning