Solve the simultaneous equations: 4x + 2y = 26 and 3x + 3y = 21

Let eq 1 = 4x + 2y = 26 eq 2 = 3x + 3y = 21 Using the elimination method: You need to make either the xs or ys have the same constant term in both equations( sign does not matter). In this case, we will make the constant be the same for both ys. To do this, find a common multiple of 2 and 3. I have chosen 6. To go from 2 to 6, you multiply by 3. Thus, you must multiply all of eq 1 by 3 --> 12x + 6y = 78. In eq 2 , the constant for y is 3, thus you have to multiply by 2 to get 6. Multiplying eq2 by 2 and you get --> 6x + 6y = 42.Next, you either subtract or add the two equations together. Since the y in both equations share the same sign, you subtract equation 2 from equation 1 (same-sign-subtract). 12x-6x = 6x 6y-6y = 0 78-42 = 36 Resulting in 6x = 36 x = 6 Substitute x into one of the original equations. 3(6) + 3y = 21 3y = 21-18 3y = 3y = 1 Therefore x = 6, y = 1

Answered by Dermot N. Maths tutor

3469 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What are the two roots of the equation y=x^2+5x+6?


One of the teachers at a school is chosen at random. The probability that this teacher is female is 3/5. There are 36 male teachers at the school. Work out the total number of teachers at the school.


At a school number of boys : number of girls = 9 : 7 There are 116 more boys than girls. Work out the total number of students at the school.


Solve 3x^2 = 8x - 2 giving your answers to 2 d.p.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences