Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.

We can see that the quadratic function will be U-shaped, as the quadratic term is with a positive sign. Therefore, the absolute extreme of the function will be a minimum. Step 1: Differentiate to find the slope of the function. dy/dx = 2x - 14Step 2: Find where the slope equals 0. This will be the x coordinate. 2x -14 = 0 2x = 14 x = 7Step 3: Substitute x into the original equation, to get the functions value at x. y = 7^2 - (14 x 7) +55 y = 49 - 98 + 55 y = 104 - 98 y = 6Step 4: We have our coordinates: (7,6)

Related Further Mathematics GCSE answers

All answers ▸

Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


How can I find the equation of a straight line on a graph?


Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


Find the gradient of the line x^2 + 3x - 6 at the point (5,34)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences