Solve the following quadratic simultaneous equation: y = x + 4 and y = x^2 + 4x

Y = x + 4y = x2 + 4x(as both are equal to y, they can be equated)So: x2 + 4x = x + 4(Rearrange to make the equation equal 0 - subtract x and 4)x2 + 3x - 4 = 0(factorise)(x + 4)(x - 1) = 0Therefore: x = -4 or x = 1(plug these values back into the original equation to find the corresponding values of y)If x = -4, y = - 4 + 4So y = 0If x = 1, y = 1 + 4So y = 5 This means the solutions to these equations are:x = -4 and y = 0x = 1 and y = 5

Answered by Julius C. Maths tutor

5524 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

64% of an audience are female. Work out the ratio females : males Give your answer in its simplest form.


Perimeter of isoceles triangle is 24cm. Sides 'x' = x + 3, side 'y' = x + 2, calculate the area


Expand the following quadratic expression: (2x+4)(x-5)


There are 6 orange sweets and n total sweets in a bag. The probability of picking two sweets one at a time randomly and both being orange is 1/3. Show that n^2 - n - 90 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences