Solve the following quadratic simultaneous equation: y = x + 4 and y = x^2 + 4x

Y = x + 4y = x2 + 4x(as both are equal to y, they can be equated)So: x2 + 4x = x + 4(Rearrange to make the equation equal 0 - subtract x and 4)x2 + 3x - 4 = 0(factorise)(x + 4)(x - 1) = 0Therefore: x = -4 or x = 1(plug these values back into the original equation to find the corresponding values of y)If x = -4, y = - 4 + 4So y = 0If x = 1, y = 1 + 4So y = 5 This means the solutions to these equations are:x = -4 and y = 0x = 1 and y = 5

Answered by Julius C. Maths tutor

5522 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve a quadratic equation?


Prove that (2n+3)^2-(2n-3)^2 is a multiple of 8 for positive integer values of n


Solve the Simultaneous Equation: 7x + 8y = 32, x - 4y = 8


How is frequency density calculated?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences