Solve the following quadratic simultaneous equation: y = x + 4 and y = x^2 + 4x

Y = x + 4y = x2 + 4x(as both are equal to y, they can be equated)So: x2 + 4x = x + 4(Rearrange to make the equation equal 0 - subtract x and 4)x2 + 3x - 4 = 0(factorise)(x + 4)(x - 1) = 0Therefore: x = -4 or x = 1(plug these values back into the original equation to find the corresponding values of y)If x = -4, y = - 4 + 4So y = 0If x = 1, y = 1 + 4So y = 5 This means the solutions to these equations are:x = -4 and y = 0x = 1 and y = 5

Answered by Julius C. Maths tutor

5342 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A price is decreased by 27% The new price is £1138.80 Work out the original price.


How would I simplify (3x^2 − 8x − 3)/(2x^2 −6x) fully?


Starting with x^2+2x+1=0 use the method of factorising to solve for x.


Work out the value of x and y in the parallelogram ABCD.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences