Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us the Y coordinate: Y = 8(2) - 2(2)2 - 9 = -1, Y = -1.Therefore the coordinates of the point are (2, -1)We know that this point must be a maximum as the coefficient of X2 is negative and therefore the curve is n shaped.

Related Further Mathematics GCSE answers

All answers ▸

y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Finding the derivative of a polynomial.


GCSE or A-level Maths: How can I find the x and y intercepts of a cubic function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences