Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us the Y coordinate: Y = 8(2) - 2(2)2 - 9 = -1, Y = -1.Therefore the coordinates of the point are (2, -1)We know that this point must be a maximum as the coefficient of X2 is negative and therefore the curve is n shaped.

ML
Answered by Michael L. Further Mathematics tutor

2453 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How to solve the inequality 1 - 2(x - 3) > 4x


A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning