How do you find the turning point of a quadratic equation?

We factorise the equation by completing the square.Take y=x2 + ax + bWhen we complete the square we have y= (x+1/2a)2-a2+b which is y= (x+1/2a)2 + c where c = -a2+bThe turning point would be at (-1/2a, c). Remember we always set (x+1/2a) = 0 to find x and y.For example, find the turning point of the equation y=x2+4x-12Firstly, we complete the square: y = (x+2)2-4-12 and this simplifies to y = (x+2)2 -16Setting (x+2)=0 we have x=-2. When x= -2 we have y= -16. Hence our turning point is (-2,-16).Another way of thinking about the graph by y= x2 and the transformation the graph will have with y= (x+1/2a)2 + c where c = -a2+bTake f(x) = x2We know when f(x)= (x+a)2. We shift the graph to the left by a, on the x axis and when f(x) = x2 + a. We shift the graph up by a, on the y axis.

Answered by Wiktoria F. Maths tutor

26373 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make c the subject of the formula a=3c-12


How do you turn 0.11111... (recurring) into a fraction


A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.


Find the roots of the following equation x^2 + 6x + 5 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences