how find dy/dx of parametric equations.

We start with parametric equations of x=2t+3 and y=3t^2+3t+2.
To find dy/dx, we need to work out either (dy/dt)/(dx/dt) or (dy/dt)*(dt/dx). This makes the dt's cancel each other out, allowing us to find dy/dx. First, we will differentiate our y=3t^2+3t+2. This gives us dy/dt=6t+3. To find dx/dt, differentiate x=2t+3 to give dx/dt=2.We can then do (dy/dt)/(dx/dt) to give (6t+3)/2=3t+1.5

SW
Answered by Samuel W. Maths tutor

3328 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


Find the stationary point(s) on the curve 2xsin(x)


Find the stationary points of the curve y (x)= 1/3x^3 - 5/2x^2 + 4x and classify them.


solve the equation 2cos x=3tan x, for 0°<x<360°


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning