The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.

Two lines are parallel if they have the same gradient. This can be found by looking at the coefficient of x. When the equation is written in the form y=ax+b, with b a constant, the gradient of the line would be a. So for the L1 the gradient is 3. So we want to get L2 in this form as well we rearrange L2, to 3y = 9x - 5, and then divide by 3 to get y = 3x -5/3. So the gradient of L2 is also 3 and therefore both lines are parallel.

JS
Answered by Joe S. Further Mathematics tutor

1804 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve x^(-1/4) = 0.2


A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning