The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.

Two lines are parallel if they have the same gradient. This can be found by looking at the coefficient of x. When the equation is written in the form y=ax+b, with b a constant, the gradient of the line would be a. So for the L1 the gradient is 3. So we want to get L2 in this form as well we rearrange L2, to 3y = 9x - 5, and then divide by 3 to get y = 3x -5/3. So the gradient of L2 is also 3 and therefore both lines are parallel.

Related Further Mathematics GCSE answers

All answers ▸

Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


Plot the graph of 1/x for x greater than 0.


y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences