Find the coordinates of the minimum point of the function y=(x-5)(2x-2)

At the minimum point the gradient is zero so dy/dx=0. To find dy/dx, first expand out the brackets so y=2x^2 - 12x + 10. Using differentiation dy/dx=4x - 12. At the minimum 4x-12=0 so 4x=12 therefore x=3. Put this back into the original equation to find the y value of the minimum point y=(3-5)(2x3-2)=-8

Related Further Mathematics GCSE answers

All answers ▸

Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences