Find the coordinates of the minimum point of the function y=(x-5)(2x-2)

At the minimum point the gradient is zero so dy/dx=0. To find dy/dx, first expand out the brackets so y=2x^2 - 12x + 10. Using differentiation dy/dx=4x - 12. At the minimum 4x-12=0 so 4x=12 therefore x=3. Put this back into the original equation to find the y value of the minimum point y=(3-5)(2x3-2)=-8

Related Further Mathematics GCSE answers

All answers ▸

Solve x^(-1/4) = 0.2


Work out the coordinates for the stationary point of y = x^2 + 3x + 4


How can a system of two linear equations be solved?


Solve the following simultanious equations: zy=28 and 2z-3y=13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences