Find the coordinates of the minimum point of the function y=(x-5)(2x-2)

At the minimum point the gradient is zero so dy/dx=0. To find dy/dx, first expand out the brackets so y=2x^2 - 12x + 10. Using differentiation dy/dx=4x - 12. At the minimum 4x-12=0 so 4x=12 therefore x=3. Put this back into the original equation to find the y value of the minimum point y=(3-5)(2x3-2)=-8

Related Further Mathematics GCSE answers

All answers ▸

Prove that tan^2(x)=1/(cos^2(x))-1


To differentiate a simple equation: y= 4x^3 + 7x


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


Solve the following simultanious equations: zy=28 and 2z-3y=13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences