From factorising a^2-b^2 hence or otherwise simplify fully (x^2 + 4)^2 - (x^2-2)^2

This question is a GCSE Higher tier style question. First the student should recognise that a2-b2= (a-b)(a+b). Using this to solve (x2+4)2-(x2-2)2 - Where a = (x2+4) and b = (x2-2). Therefore substituting a and b into (a-b)(a+b)...(x2+4+x2-2)(x2+4-x2+2) and simplifying...(2x2+2)(6). Expanding out the brackets gives: 12x2+12. Factorising out the 12 gives you 12(x2+1). The final answer!

Answered by Mythili S. Maths tutor

9001 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise: y = x^2 + 5x + 6


Solve the following simultaneous equation: 3x+y= 11 and 2x+y=8.


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


Simplify 3 × a × 3 × a


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences