Differentiate x^3(sinx) with respect to x

As we are differentiating a product (two things times together) we can use the product rule which is if:

                       y = u(x)v(x)

then

                  dy/dx = u(dv/dx) + v(du/dx).

So firstly looking at our equation we need to identify u(x) and v(x). In our case

u(x) = x3 ​        and       v(x) = sinx

Now we need to differentiate both of them seperatly so (remember when we differentiate we times by the old power and then subtract a power)

du/dx = 3x​2          ​and       dv/dx = cosx

Now putting all this into the formula we have

    dy/dx = u(dv/dx) + v(du/dx)

             = x3​cosx + sinx(3x2​)

Then rearranging this we get

        dy/dx = x​3​cosx + 3x2sinx

Answered by Sophie C. Maths tutor

30508 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


Find the derivative of the following function with respect to x. y = 5e^x−2xsin(x)


Find the integral of ln x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences