Differentiate x^3(sinx) with respect to x

As we are differentiating a product (two things times together) we can use the product rule which is if:

                       y = u(x)v(x)

then

                  dy/dx = u(dv/dx) + v(du/dx).

So firstly looking at our equation we need to identify u(x) and v(x). In our case

u(x) = x3 ​        and       v(x) = sinx

Now we need to differentiate both of them seperatly so (remember when we differentiate we times by the old power and then subtract a power)

du/dx = 3x​2          ​and       dv/dx = cosx

Now putting all this into the formula we have

    dy/dx = u(dv/dx) + v(du/dx)

             = x3​cosx + sinx(3x2​)

Then rearranging this we get

        dy/dx = x​3​cosx + 3x2sinx

Answered by Sophie C. Maths tutor

30394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]


What are complex and imaginary numbers and how are they different from normal (real) numbers?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences