Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx

We are given the substitution to use, so the first step is to differentiate "u" with respect to x

du/dx = -sin(x)

Now, to replace the "dx" in the original integrand with something in terms of "du", we rearrange the differential:

dx = -1/sin(x) du

We substitute this into the original expression we are integrating; this gives: 

S -12sin(x)cos3(x) (-1/sin(x)) du

Let's do some simplifying here; the negative signs cancel, and so does sin(x):

S 12cos3(x) du

Now, simplify again using u=cos(x); this gives:

S 12u3 du

This is a simple C1-level integration; integrating with respect to "u" and adding a constant of integration, we get:

3u4 + c

For our final answer, replace "u" with cos(x):

3cos4x) + c

Answered by Arnab H. Maths tutor

7513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


What are the main factors when deciding whether or not the Poisson distribution is a suitable model?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences