Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.

First compute the derivative of f(x) using the power rule on each term. f(x) = 2x^3 - 12x^2 + 25x - 11 so f'(x) = 6x^2 - 24x + 25. Now complete the square for the derivative. f'(x) = 6 * ((x-2)^2 - 4) + 25 = 6 * (x-2)^2 - 24 + 25 = 6 * (x-2)^2 + 1. Now observe that the first term is >= 0 since it is the result of a square multiplied by the positive constant 6. The second term, 1, is positive. Hence the whole expression is positive for any x. So we've shown that f'(x) > 0 for any x, so the function f(x) is increasing.

MT
Answered by Michael T. Further Mathematics tutor

3774 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


Work out the gradient of the curve y=x^3(x-3) at the point (3,17)


Expand (2x+3)^4


How do I know I can multiply two matrices and if so, how do I do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning