Simplify fully 3/(2x + 12) - (x - 15)/(x^2 - 2x - 48)

The first step to answering this question is recognising that the denominators should be factorised to find any common factors. Factorising 3/2x+12 gives 3/2(x+6) and factorising (x-15)/(x2-2x-48) gives (x-15)/(x+6)(x-8). The student should then see that the next step would be to put them both over a common denominator so that they can then be subtracted. To do this the first term can be multiplied by (x-8)/(x-8). Then the second term can be multiplied by 2/2. Another way of saying this would be to multiply the top and the bottom of the first fraction by (x-8) and the second one by 2. This then gives 3(x-8)/2(x-8)(x+6) - 2(x-15)/2(x-8)(x+6). The student should then combine the fractions into 1 which is 3(x-8)-2(x-15)/2(x+6)(x-8). The brackets on the top should then be expanded and the expression simplified to (x+6)/2(x+6)(x-8). An easy mistake to make is to forget that the - outside and the - inside create a +. The (x+6) then cancel and the simplified expression is 1/2(x-8)

AC
Answered by Archie C. Maths tutor

5044 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise the expression given


Show that (x + 4)(x + 5)(x + 6) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


When solving two simultaneous equations, when should you use the method of elimination and when would you use the method of substitution?


The first three terms of a sequence are a, b, c. The term-to-term rule of the sequence is 'Multiply by 2 and subtract 4'. Show that c = 4(a – 3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning