A person swims from a depth of 0.50 m to a depth of 1.70 m below the surface of the sea. Density of the sea water = 1030 kg/m^3. Gravitational field strength = 9.8 N/kg. Calculate the increase in pressure on the swimmer. Give the unit.

We may use from the equation sheet, that p = h ρ g. Here, we are looking for a change in pressure, so one or more of the terms on the other side of the equation must be changing too. The question tells us that the depth, which we can consider as h, is in fact changing. Therefore, our equation becomes:Δp = Δh ρ g,Let us say that the swimmer is going from h1 (0.50m) to h2 (1.70m). By substituting this into our equation, we obtain:Δp = (h2 - h1) ρ gWe know from the question that the density, ρ, of the sea water is 1030kg/m^3 and that the gravitational field strength, g, is 9.8N/kg, so we can plug those into the equation like so:Δp = (1.70 - 0.50)10309.8From which we obtain that the increase in pressure on the swimmer is Δp = 12112.8Pa, which we must round to 2 sig. figs to give Δp = 12000Pa.

Answered by Luc B. Physics tutor

3689 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Outline the structure of the alpha and beta particle and give their overall charge and a material which it cannot pass through.


What is the law of conservation of energy?


Briefly outline how a skydiver reaches terminal velocity.


An electromagnetic wave has a wavelength of 3.0m and a speed of 3x10^8 m/s. State what type of radiation this wave is and calculate the period of the wave.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences