A person swims from a depth of 0.50 m to a depth of 1.70 m below the surface of the sea. Density of the sea water = 1030 kg/m^3. Gravitational field strength = 9.8 N/kg. Calculate the increase in pressure on the swimmer. Give the unit.

We may use from the equation sheet, that p = h ρ g. Here, we are looking for a change in pressure, so one or more of the terms on the other side of the equation must be changing too. The question tells us that the depth, which we can consider as h, is in fact changing. Therefore, our equation becomes:Δp = Δh ρ g,Let us say that the swimmer is going from h1 (0.50m) to h2 (1.70m). By substituting this into our equation, we obtain:Δp = (h2 - h1) ρ gWe know from the question that the density, ρ, of the sea water is 1030kg/m^3 and that the gravitational field strength, g, is 9.8N/kg, so we can plug those into the equation like so:Δp = (1.70 - 0.50)10309.8From which we obtain that the increase in pressure on the swimmer is Δp = 12112.8Pa, which we must round to 2 sig. figs to give Δp = 12000Pa.

LB
Answered by Luc B. Physics tutor

5167 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

what force does a person have to exert on one side of a seesaw if the other person weighs 70kg and is the same distance away from the pivot (2m) on the other side of the seesaw?


When a toothbrush is charging, p.d. across the primary coil is 230 V, p.d. across the secondary coil is 7.2 V. The primary coil in the charging base has 575 turns of wire on its coil. Find the number of turns on the secondary coil inside the toothbrush.


A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.


Using newtons laws explain how a falling object can reach terminal velocity (6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning