A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.

First, we look at the energy of the smaller ball.We know Gravitational potential energy = mgh (m=mass g=9.81 h=height)So we can plug our numbers from the question into the equation to get:GPE=mgh=1x9.81x10=98.1JNow we have the kinetic energy at the bottom of the hill which can be written as:KE=0.5mv^2, which rearranged gives:v=sqrt(2KE/m)=sqrt(298.1/1)=14.01ms^-1So the ball's velocity at the bottom of the hill = 14.01ms^-1Now the second part of the question:We can assume the collision is elastic, so from conservation of momentum we know:m1v1=m2v2, so114.01=5*v (where v is the velocity were looking for), so:v=14.01/5=2.80ms^-1So the 5kg ball moves away with velocity 2.80ms^-1.

TH
Answered by Tim H. Physics tutor

2041 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A bomb of mass 34kg, at rest is detonated. The explosion splits the bomb into two pieces, one of mass 13kg, which is thrown to the left at a velocity of 28 m/s. What is the velocity of the second piece?


A train accelerates from 10 m/s to 50 m/s in 20 seconds. Calculate the Acceleration


How to find wave speed from frequency and wave length.


How do I remember all the formulas I will need for questions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning