given that (x+8)^2-62=ax^2+bx+c find the values of a,b and c (3 marks)

For this question, the main component of the equation we need o look at is (x+8)^2. We know that (x+8)^2 is the same as (x+8)(x+8). First we have to expand these brackets. For his I make small table to ensure that I expand this correctly. So once we have expanded this fracker- we should get x^2+8x+8x+64. However this is only when we expand the brackets, we cannot forget about the -62 in the equation.So putting it all together our solved equation should be: x^2+16x+64-62this can be simplified to x^2+16x+2 - allowing us to answer the question is the asked form

NJ
Answered by Neyha J. Maths tutor

2255 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations to find x and y: 3y - x = 12 y + 2x = -3


Find the coordinates of the mid-point AB where A (-3,-3) and B (1,3)


f(x) = 4x^2 + 8x - 5 ; complete the square to find the turning point of f(x).


How to solve rates of change questions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences