given that (x+8)^2-62=ax^2+bx+c find the values of a,b and c (3 marks)

For this question, the main component of the equation we need o look at is (x+8)^2. We know that (x+8)^2 is the same as (x+8)(x+8). First we have to expand these brackets. For his I make small table to ensure that I expand this correctly. So once we have expanded this fracker- we should get x^2+8x+8x+64. However this is only when we expand the brackets, we cannot forget about the -62 in the equation.So putting it all together our solved equation should be: x^2+16x+64-62this can be simplified to x^2+16x+2 - allowing us to answer the question is the asked form

NJ
Answered by Neyha J. Maths tutor

2353 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I expand 3 brackets, e.g. (x + 3)(x + 4)(x + 2)?


How can I find the stationary points of a parabola given it's equation?


Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.


Determine if the Following equality has real roots: (3*X^2) - (2*X) + 4 = (5*X^2) + (3*X) + 9, If the equation has real roots, calculate the roots for this equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences