Prove that the decimal 0.303030... (recurring) has the value of 10/33

Let x = 0.303030...
We do not want to deal with a recurring decimal, and so we want to cancel this out. The easiest way to do this is to multiply x by 10 and this means we multiple our decimal by 10 until we find one that matches the original decimal, _.3030... .
10x = 3.030303... (does not work as the decimal starts with _.0303..., which does not match our original decimal).
100x = 30.303030... (this has the same recurring decimal as x, _.3030...).
Now that we have a matching recurring decimal, we can subtract one from another to give us a whole number.
100x - x = 30.303030... - 0.303030...99x = 30
Now this is an equation that is easier to deal with, as we can divide 30 by 99 to give us:
x = 30/99, and when simplified, this makes 10/33 (dividing by 3)

RS
Answered by Raz S. Maths tutor

2635 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation x^2 + x - 20 = 0


A straight line passes through the point (0, 6) and is perpendicular to y = 4x - 5. Find the equation of this line, giving your answer in the form y = mx + c .


Make t the subject of this equation: x=4t-7


Solve (x+10)(x-16)=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences