Prove that the decimal 0.303030... (recurring) has the value of 10/33

Let x = 0.303030...
We do not want to deal with a recurring decimal, and so we want to cancel this out. The easiest way to do this is to multiply x by 10 and this means we multiple our decimal by 10 until we find one that matches the original decimal, _.3030... .
10x = 3.030303... (does not work as the decimal starts with _.0303..., which does not match our original decimal).
100x = 30.303030... (this has the same recurring decimal as x, _.3030...).
Now that we have a matching recurring decimal, we can subtract one from another to give us a whole number.
100x - x = 30.303030... - 0.303030...99x = 30
Now this is an equation that is easier to deal with, as we can divide 30 by 99 to give us:
x = 30/99, and when simplified, this makes 10/33 (dividing by 3)

Answered by Raz S. Maths tutor

2589 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these two simultaneous equations.


Solve X^2 +13X+48=12


200 pupils are taking a school trip. Some are flying, some are taking the bus. There are three times as many boys going as girls. One third of the boys going are flying. How many boys are getting the bus?


All tickets to the movie theatres cost the same price. Jessica and Thomas pay £84 together. Jessica pays £38.5 for 11 tickets. How many does Thomas Buy?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences