A ball of mass 0.25 kg is travelling with a velocity of 1.2 m/s when it collides with an identical, stationary ball. After the collision, the two balls move together with the same velocity. How fast are they moving?

This question involves the principle of the conservation of momentum. 

Recall: Assuming no external forces act, linear momentum is always conserved. This means the total linear momentum of two objects before they collide equals the total linear momentum after the collision. 

To start, let's work out the momentum of each ball separately. We'll call the moving ball "A" and the stationary ball "B". We will need the formula Momentum = Mass * Velocity, or p = m * v

For ball A: 

p = m * v

p = 0.25 * 1.2

p = 0.3 kg m s-1

Let's call this value pA

For ball B: 

p = m *v

p = 0.25 * 0

p = 0. 

Let's call this value pB.

So now we can work out the total momentum before the collision: 

ptotal = pA + pB = 0.3 + 0 = 0.3 kg m s-1

This is where we bring in the principle of conservation of momentum. The question tells us that after the collision, the balls move together with the same velocity. This means we can treat them as one object, and use our formula to work out the velocity after the collision. 

We know that after the collision, the total momentum = 0.3 kg m/s, from the principle of conservation. 

We also know that the total mass of both balls (remember we're treating them as one object, so we can add the masses) is 0.5 kg. 

We simply plug these numbers into our formula for momentum: 

p = m * v

0.3 = 0.5 * v

v = 0.3/0.5

v = 0.6 m/s

Answered by Arnab H. Physics tutor

9469 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


What does a stress-strain curve for a metal look like and what does each part mean?


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


State assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences