How to solve a quadratic by factorisation?

There are 4 different methods to solve quadratics: factorisation, quadratic formula, graphically and completing the square. Today we shall solve equations by factorisation.Using the equation x2+ 6x + 8,1) We first multiply the coefficient (number before) of x2 and the constant (number not attached to an x). This would be 8[This step is more relevant when we have a number greater than one being the coefficient of x2.2) We then have to find 2 factors of this number that add up to equal the coefficient of x, that being 6 in this case. The factors of 8 are 1, 2, 4 and 8. Only 2 and 4 add up to make 6 and so this would be the numbers we use to make up the bracket3) In this case, as there is no coefficient of x2, the 2 and 4 make up the interior numbers of the bracket: (x+4)(x+2)In terms of proving this; we can rearrange the expression to include the factors of 2x and 4x; they will replace the 6x in the expression: x2 + 2x + 4x + 8.4) Factorise the quadratic as two linear expressions: x2+2 and 4x +8. this will become x(x+2) and 4(x+2)5) We then treat the duplicate bracket as one of our final factorised brackets then combine the factor on the outside to make our other bracket. therefore the final answer is (x+2)(x+4)

OO
Answered by Oyin O. Maths tutor

2616 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Raya buys a van for £8500 plus VAT at 20%. Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio of the deposit Raya pays to the total of the 12 equal payments.


If a rectangle has sides (x+3) and (2x-1) and an area of 15, find x and the length of each side.


How can i solve the following simultaneous equations? 5x + y = 4 and 3x + 2y = 5?


The equation of line L1 is y=3x-5. The equation of line L2 is 2y-6x+5=0. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning