Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).

Differentiating the equation for x with respect to t, we get: dx/dt=2Sqrt(3)cos(2t);Take the reciprocal of dx/dt to get dt/dx=1/[2Sqrt(3)cos(2t)]Using a trigonometric identity on the equation for y, we get: y=2[1+cos(2t)];Differentiating the equation for y with respect to t, we get: dy/dt=-4sin(2t);Multiply dy/dt and dt/dx gives: dy/dx=-2/3 Sqrt(3)tan(2t).From the question we are asked to find k.Therefore, k=-2/3

Answered by Peter C. Maths tutor

3998 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have coordinates (1, 6) and (7,− 2) respectively. (a) Find the length of AB.


Integrate 3 sin(x) + cos(2x)


y = x^2 − 2*x − 24*sqrt(x) - i) find dy/dx ii) find d^2y/dx^2


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences