Solve algebraically the simultaneous equations: (x^2)+(y^2) = 25 , y-3x = 13

Step 1: First rearrange second equation for either x or y (in this example it is easier to make y the subject of the equation: y = 13+3xStep 2: Substitute the expression obtained for y into the first equation ( (x^2) + (13+3x)^2 = 25 )Step 3: Clean up the equation ( 10x^2+78x+144 = 0 )Step 4: Factorise ( (5x+24) (x+3) = 0 )Step 5: Solve for x ( x = -24/5 and -3 )Step 6: Substitute calculated values of x into the first rearranged equation of y to obtain corresponding values of y ( y = -7/5 and 4 )

Answered by Spondan B. Maths tutor

2123 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 4x + 7y = 1, 3x + 10y = 15.


Solve x^2 + x - 2 = 0


Solve the simultaneous equations: x+y=2 , 4y²-x²=11


The point P has coordinates (3,4), Q has the coordinates (a,b), a line perpendicular to PQ is given by the equation 3x+2y=7. Find an expression for b in terms of a


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences