A pyramid has a square base with sides of length 4m and a height 3m. What is the length from one of the base corners to the top of the pyramid?

The student should first draw a diagram of the pyramid, labelling the lengths of the base and the height. The student is not able to solve this problem in one step but must think two steps ahead. The student must realise that in order to solve the question half the diagonal length of the base must be known. This can be found by using Pythagoras Theorem to find the hypotenuse of a right angle triangle with other sides being 2m. This half diagonal length is given by:lB = ( (2m)2 + (2m)2 )1/2 = ( 4m2 + 4m4 )1/2 = ( 8m2 )1/2 = (8)1/2mHence this diagonal is the square root of 8 meters long. Knowing this a second right angle triangle should be drawn of base length sqrt(8) and height of 5 meters. Pythagoras should again be used to find the hypotenuse of this triangle:l = ( (sqrt(8)m)2 + (3m)2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 17m2 ) = sqrt(17)m

NH
Answered by Nathan H. Maths tutor

3318 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Katie wants to buy 4 adult show tickets for £10 each and 2 child show tickets for £3 each. There is a 10% booking fee and 3% is then added for paying by credit card. Work out the total charge for Katie if she pays with a credit card.


How do you factorise the following quadratic: x^2 - 5*x - 14?


Solve the simultaneous equations 3x + y = –4 and 3x – 4y = 6


Can you explain how to find straight line equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning