A pyramid has a square base with sides of length 4m and a height 3m. What is the length from one of the base corners to the top of the pyramid?

The student should first draw a diagram of the pyramid, labelling the lengths of the base and the height. The student is not able to solve this problem in one step but must think two steps ahead. The student must realise that in order to solve the question half the diagonal length of the base must be known. This can be found by using Pythagoras Theorem to find the hypotenuse of a right angle triangle with other sides being 2m. This half diagonal length is given by:lB = ( (2m)2 + (2m)2 )1/2 = ( 4m2 + 4m4 )1/2 = ( 8m2 )1/2 = (8)1/2mHence this diagonal is the square root of 8 meters long. Knowing this a second right angle triangle should be drawn of base length sqrt(8) and height of 5 meters. Pythagoras should again be used to find the hypotenuse of this triangle:l = ( (sqrt(8)m)2 + (3m)2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 17m2 ) = sqrt(17)m

NH
Answered by Nathan H. Maths tutor

3226 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation x^2-10x+21=0


There are 12 counters in a bag. There is an equal number of red counters, yellow counters and blue counters in the bag. There are no other counters in the bag. 3 counters are taken from the bag. Work out the probability of taking 3 red counters.


There is a cube with a length 3x. The expression for the volume in cubic centimeters is equal to the expression for the surface area in square centimeters. Calculate the length of a side of the cube.


Find the possible values of x for x^2 = 36-5x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning