Find the complex solutions for the following equation: -3x^2+4x+4=0

  1. -3x2+4x+4 = 0 using factorisation find the quadratic in the form (-3x+a)(x+b)=0 find two numbers (a and 3b) that have a product of 4 and a sum of 4 a =2 and 3b =2 ➔ a =2 and b =2/3 (-3x+2)(x=2/3)=0 if the product of (-3x+2) and (x=2/3) is 0 then (-3x+2)=0 or (x=2/3)=0 or both hence x = -2/3 or x = 22) Using the quadratic equation The quadratic equation ➔ ax2 + bx + c = 0 ➔ x = -b±√(b2-4ac) / 2a -3x2+4x+4 = 0 ➔ a=-3, b=4, c=4 into the equation and solve x = -4±√(42-4(-3)(4)) / 2(-3) x = -4±√(16 + 48) / -6 x = -4±√64 / -6 x = -4±8 / -6 x = 4/-6 or -12/-6 x = -2/3 or x = 2
CR
Answered by Charlotte R. Maths tutor

3832 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve; (6x - 2)/2 - (4x+7)/3 = 1-x


How do I expand (3x + 6)(x + 2) ?


Calculate the length of the side of the Triangle marked by x.


Complete the square of the equation below.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning