(x + a)(x + 3)(2x+1) = bx^3 + cx^2 + dx -12, find the values of a, b, c and d.

This question is an example of expanding algeba and equating coefficients. If the brackets on the left-hand side are expanded the unknown values can be found from the coefficients on the right-hand side.Step 1) Expand the brackets(x2 + (3 + a)x + 3a)(2x + 1) = bx 3 + cx2 + dx - 122x3 + (6 + 2a)x2 + 6ax + x2 + (3 + a)x + 3a = bx 3 + cx2 + dx - 12Now expanded, the equation should be simplified.2x3 + (7 + 2a)x2 + (7a + 3)x + 3a = bx 3 + cx2 + dx - 12Now one by one, the variables can be calculated.a = -4, Hence:2x3 - x2 - 25x - 12b = 2, c = -1, d = -25(This is an example question from an OCR GCSE higher paper June 2018)

Answered by Joe S. Maths tutor

6122 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the decimal 0.303030... (recurring) has the value of 10/33


Factorise fully 3a^3b + 12a^2b^2 + 9a^5b^3


There are N counters in a bag, 4 being red and the rest being blue. I take two counters at random from the bag (without replacing the first).The chance i take two blue counters is 1/3, See below in the answer box


3 teas and 2 coffees have a total cost of £7.80. 5 teas and 4 coffees have a total cost of £14.20. Work out the cost of one tea and the cost of one coffee.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences