Solve the simultaneous equations: 2x + y = 18 and x - y = 6

We need to find a value of x to sub into equation 1, so add y to both sides of equation 2: x = 6 + y. Then sub this into the x value of equation 1 and solve to find y: 2(6 + y) + y = 18. 12 + 2y + y = 18. 3y + 12 = 18. 3y = 6. y = 2. To find the x-value, sub in this value of y into equation 2 and solve: x - (2) = 6. x = 8.

AW
Answered by Anna W. Maths tutor

2970 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Here are some fractions: 3/10, 2/8, 4/12, 12/40, 5/20. Which of these fractions are equivalent to 1/4?


Solve 3x - 5 < 16


If x^2-5x+6=0, solve for x.


Solve x^2 -7x+10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning